Molecular Technologies is a non-profit academic resource within the Beckman Institute at Caltech that develops and supports programmable molecular technologies for reading out and regulating the state of endogenous biological circuitry.
The Molecular Technologies team has designed and synthesized custom HCR imaging kits for researchers in hundreds of laboratories worldwide. Molecular Technologies papers have been cited over 2000 times.
Molecular Technologies is a non-profit academic resource within the Beckman Institute at Caltech that develops and supports programmable molecular technologies for reading out and regulating the state of endogenous biological circuitry.
The Molecular Technologies team has designed and synthesized custom HCR imaging kits for researchers in hundreds of laboratories worldwide. Molecular Technologies papers have been cited over 2000 times.
Molecular Technologies is a non-profit academic resource within the Beckman Institute at Caltech that develops and supports programmable molecular technologies for reading out and regulating the state of endogenous biological circuitry.
The Molecular Technologies team has designed and synthesized custom HCR imaging kits for researchers in hundreds of laboratories worldwide. Molecular Technologies papers have been cited over 2000 times.
Citation data: Google Scholar
HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples
S.J. Schulte, M.E. Fornace, J.K. Hall, G.J. Shin, and N.A. Pierce
Development, 151(4): dev202307, 2024.
​
Multiplex, quantitative, high-resolution imaging of protein:protein complexes via hybridization chain reaction
S.J. Schulte, B. Shin, E.V. Rothenberg, and N.A. Pierce
ACS Chem Biol, acschembio.3c00431, 2024.
​
Hybridization chain reaction lateral flow assays for amplified instrument-free at-home SARS-CoV-2 testing
S.J. Schulte, J. Huang, and N.A. Pierce
ACS Infect Dis, 9, 450-458, 2023.
​
NUPACK: analysis and design of nucleic acid structures, devices, and systems
M.E. Fornace, J. Huang, C.T. Newman, N.J. Porubsky, M.B. Pierce, and N.A. Pierce
ChemRxiv, 10.26434/chemrxiv-2022-xv98l, 2022.
​
Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization
M. Schwarzkopf, M.C. Liu, S.J. Schulte, R. Ives, N. Husain, Harry M.T. Choi, and N.A. Pierce
Development, 148(22):dev199847, 2021.
​
High-performance allosteric conditional guide RNAs for mammalian cell-selective regulation of CRISPR/Cas
L.M. Hochrein, H. Li, and N.A. Pierce
ACS Synth Biol, 10(5):964-971, 2021.
​
A unified dynamic programming framework for the analysis of interacting nucleic acid strands: enhanced models, scalability, and speed
M.E. Fornace, N.J. Porubsky, and N.A. Pierce
ACS Synth Biol, 9(10):2665-2678, 2020.
​
Conditional guide RNAs: programmable conditional regulation of CRISPR/Cas function in bacterial and mammalian cells via dynamic RNA nanotechnology
M.H. Hanewich-Hollatz, Z. Chen, L.M. Hochrein, J. Huang, N.A. Pierce
ACS Cent Sci, 5(7):1241-1249, 2019.
​
Signal transduction in human cell lysate via dynamic RNA nanotechnology
L.M. Hochrein, T.J. Ge, M. Schwarzkopf, N.A. Pierce
ACS Synth Biol, 7(12), 2796-2802, 2018.
Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust
H.M.T. Choi, M. Schwarzkopf, M.E. Fornace, A. Acharya, G. Artavanis, J. Stegmaier, A. Cunha, N.A. Pierce
Development, 145:dev165753, 2018.
​
Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos
V. Trivedi, H.M.T. Choi, S.E. Fraser, and N.A. Pierce
Development, 145:dev156869, 2018.
​
Constrained multistate sequence design for nucleic acid reaction pathway engineering
B.R. Wolfe, N.J. Porubsky, J.N. Zadeh, R.M. Dirks, and N.A. Pierce
J Am Chem Soc, 39:3134−3144, 2017.
​
Mapping a multiplexed zoo of mRNA expression
H.M.T. Choi, C.R. Calvert, N. Husain, D. Huss, J.C. Barsi, B.E. Deverman, R.C. Hunter, M. Kato, S.M. Lee, A.C.T. Abelin, A.Z. Rosenthal, O.S. Akbari, Y. Li, B.A. Hay, P.W. Sternberg, P.H. Patterson, E.H. Davidson, S.K. Mazmanian, D.A. Prober, M. van de Rijn, J.R. Leadbetter, D.K. Newman, C. Readhead, M.E. Bronner, B. Wold, R. Lansford, T. Sauka-Spengler, S.E. Fraser, and N.A. Pierce
Development, 143:3632-3637, 2016.
​
Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing
S. Shah, E. Lubeck, M. Schwarzkopf, T.-f. He, A. Greenbaum, C.h. Sohn, A. Lignell, H.M.T. Choi, V. Gradinaru, N.A. Pierce, and L. Cai
Development, 143:2862-2867, 2016.
​
Multiplexed miRNA northern blots via hybridization chain reaction
M. Schwarzkopf and N.A. Pierce
Nucleic Acids Res, 44(15):e129, 2016.
​
Sequence design for a test tube of interacting nucleic acid strands
B.R. Wolfe and N.A. Pierce
ACS Synth Biol, 4(10):1086–1100, 2015.
​
Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction
D. Huss, H.M.T. Choi, C. Readhead, S.E. Fraser, N.A. Pierce and R. Lansford
Cold Spring Harb Protoc, 2015(3):259-268, 2015.
​
Exquisite sequence selectivity with small conditional RNAs
J.B. Sternberg and N.A. Pierce
Nano Lett, 14(8):4568-4572, 2014.
​
Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability
H.M.T. Choi, V.A. Beck, and N.A. Pierce
ACS Nano, 8(5):4284-4294, 2014.
​
Developmental self-assembly of a DNA tetrahedron
J.P. Sadowski, C.R. Calvert, D.Y. Zhang, N.A. Pierce, and P. Yin
ACS Nano, 8(4):3251-3259, 2014.
​
Conditional Dicer substrate formation via shape and sequence transduction with small conditional RNAs
L.M. Hochrein, M. Schwarzkopf, M. Shahgholi, P. Yin, and N.A. Pierce
J Am Chem Soc, 135(46):17322-17330, 2013.
​
Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in the termite gut hydrogen economy
A.Z. Rosenthal, X. Zhang, K.S. Lucey, E.A. Ottesen, V. Trivedi, H.M.T. Choi, N.A. Pierce, and J.R. Leadbetter
Proc Natl Acad Sci USA, 110(40):16163-16168, 2013.
​
Selective nucleic acid capture with shielded covalent probes
J.R. Vieregg, H.M. Nelson, B.M. Stoltz, and N.A. Pierce
J Am Chem Soc, 135(26):9691-9699, 2013.
​
Nucleic acid sequence design via efficient ensemble defect optimization
J.N. Zadeh, B.R. Wolfe, and N.A. Pierce
J Comput Chem, 32:439-452, 2011.
​
NUPACK: Analysis and design of nucleic acid systems
J.N. Zadeh, C.D. Steenberg, J.S. Bois, B.R. Wolfe, M.B. Pierce, A.R. Khan, R.M. Dirks, and N.A. Pierce
J Comput Chem, 32:170-173, 2011.
​
Programmable in situ amplification for multiplexed imaging of mRNA expression
H.M.T. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce
Nature Biotechnol, 28:1208-1212, 2010.
​
Programming biomolecular self-assembly pathways
P. Yin, H.M.T. Choi, C.R. Calvert, and N.A. Pierce
Nature, 451:318-322, 2008.
​
An autonomous polymerization motor powered by DNA hybridization
S. Venkataraman, R.M. Dirks, P.W.K. Rothemund, E. Winfree, and N.A. Pierce
Nature Nanotech, 2(8):490-494, 2007.
​
Thermodynamic analysis of interacting nucleic acid strands
R.M. Dirks, J.S. Bois, J.M. Schaeffer, E. Winfree, and N.A. Pierce
SIAM Rev, 49(1):65-88, 2007.
​
Topological constraints in nucleic acid hybridization kinetics
J.S. Bois, S.Venkataraman, H.M.T. Choi, A.J. Spakowitz, Z.-G. Wang, and N.A. Pierce
Nucleic Acids Res, 33(13):4090-4095, 2005.
​
Triggered amplification by hybridization chain reaction
R.M. Dirks and N.A. Pierce
Proc Natl Acad Sci USA, 101(43):15275-15278, 2004.
​
A synthetic DNA walker for molecular transport
J.-S. Shin and N.A. Pierce
J Am Chem Soc, 126:10834-10835, 2004.
​
Rewritable memory by controllable nanopatterning of DNA
J.-S. Shin and N.A. Pierce
Nano Lett, 4(5):905-909, 2004.
​
An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots
R.M. Dirks and N.A. Pierce
J Comput Chem, 25:1295-1304, 2004.
​
Adjoint and defect error bounding and correction for functional estimates
N.A. Pierce and M.B. Giles
J Comput Phys, 200:769-794, 2004.
​
Paradigms for computational nucleic acid design
R.M. Dirks, M. Lin, E. Winfree, and N.A. Pierce
Nucleic Acids Res, 32(4):1392-1403, 2004.
​
A partition function algorithm for nucleic acid secondary structure including pseudoknots
R.M. Dirks and N.A. Pierce
J Comput Chem, 24(13):1664-1677, 2003.
​
Exact rotamer optimization for protein design
D.B. Gordon, G.K. Hom, S.L. Mayo, and N.A. Pierce
J Comput Chem, 24(2):232-243, 2003.
​
Algorithm developments for discrete adjoint methods
M.B. Giles, M.C. Duta, J.-D. Mueller, and N.A. Pierce
AIAA J, 41(2):198-205, 2003.
​
Protein design is NP-hard
N.A. Pierce and E. Winfree
Protein Eng, 15(10):779-782, 2002.
​
Analytic adjoint solutions for the quasi-one-dimensional Euler equations
M.B. Giles and N.A. Pierce
J Fluid Mech, 426:327-345, 2001.
​
Conformational splitting: a more powerful criterion for dead-end elimination
N.A. Pierce, J.A. Spriet, J. Desmet, and S.L. Mayo
J Comput Chem, 21(11):999-1009, 2000.
​
Adjoint recovery of superconvergent functionals from PDE approximations
N.A. Pierce and M.B. Giles
SIAM Rev, 42(2):247-264, 2000.
​
An introduction to the adjoint approach to design
M.B. Giles and N.A. Pierce
Flow Turb Comb, 65:393-415, 2000.
​
Optimum aerodynamic design using the Navier-Stokes equations
A. Jameson, L. Martinelli, and N.A. Pierce
Theor Comput Fluid Dyn, 10:213-237, 1998.
​
Efficient computation of unsteady viscous flows by an implicit preconditioned multigrid method
N.A. Pierce and J.J. Alonso
AIAA J, 36(3):401-408, 1998.
​
Preconditioned multigrid methods for compressible flow calculations on stretched meshes
N.A. Pierce and M.B. Giles
J Comput Phys, 136:425-445, 1997.